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We have introduced a modification of the classical Euler numerical scheme for stochastic differential equations driven by a fractional 
Brownian motion with Hurst parameter larger than 1/2. For this new scheme, we have  derived a precise rate of convergence to zero or the 
error and the limit in distribution  of the error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for 
rough differential equations and for stochastic differential equations driven by a fractional Brownian motion with Hurst parameter larger 
than 1/2.





We have studied the linear stochastic heat equation driven by a general multiplicative Gaussian noise. This equation is a continuous version 
of the parabolic Anderson model, which is a popular model for diffusions with a random potential, with many applications in mathematical 
physics. The existence and uniqueness of a solution have been established under general conditions on covariance of the noise. On the other 
hand, Feynman-Kac formulas for the solutions and for their moments have been derived and applied to obtain sharp intermittency upper and 
lower bounds for the moments of the solution. We also have derived upper and lower bounds for intermittency fronts. We have established 
the existence and uniqueness of a solution for the non-linear one-dimensional stochastic heat equation driven by a Gaussian noise which is 
white in time and it has the covariance of a fractional Brownian motion with Hurst parameter between 1/4 and 1/2 in the space variable. The 
roughness of this  noise creates important technical difficulties that we have been able to solve. For this equation we have derived precise 
spatial asymptotic results and large deviation estimates.





We have established central limit theorems for functionals of fractional Volterra processes, which are relevant in the estimation of 
parameters for the fractional CARk model, using the fourth moment theorem. We have proved a central limit theorem for functionals of a 
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Scientific Progress and Accomplishments

Research proposal 1. Approximation schemes for stochastic dif-
ferential equations driven by a fractional Brownian motion

Foreword

Consider a d-dimensional stochastic differential equation driven by an m-dimensional
fractional Brownian motion BH = {BH

t , t ∈ [0, T ]} with Hurst parameter H ∈
(

1
2
, 1
)

of
the form

Xt = x0 +

∫ t

0

b(Xs)ds+
m∑
j=1

∫ t

0

σj(Xs)dB
j
s . (1)

The stochastic integrals appearing in the above formula are path-wise Riemann-Stieltjes
integrals constructed using Young’s methodology (see [31]). We have studied numerical
approximations for the solution to equation (1) based on uniform partitions of the interval
[0, T ], ti = iT

n
, i = 0, . . . , n. It was proved by Mishura in 2008 (see [26]) that the classical

Euler approximation, denoted by Xn, satisfies

sup
0≤t≤T

|Xn
t −Xt| ≤ Cεn

1−2H+ε,

for any real number ε > 0. Moreover, the convergence rate n1−2H is sharp for this
scheme, in the sense that n2H−1[Xn

t −Xt] converges almost surely to a finite and non-zero
limit. This shows that the numerical scheme Xn has a rate of convergence different from
the Euler-Maruyama scheme for the classical Brownian motion, which is not surprising
because for H = 1

2
the sequence Xn

t converges to the solution of the corresponding Itô
equation, and for H > 1

2
we are dealing with Riemann-Stieltjes pathwise integrals.

We have introduced a new (modified Euler) approximation scheme for equation (1)
that takes into account the correlation between the input noise dBH

t /dt and the system
Xt. This new scheme has the rate of convergence γ−1

n , where

γn =


n2H− 1

2 if 1
2
< H < 3

4
,

n√
logn

if H = 3
4
,

n if 3
4
< H < 1 .

(2)

In particular, the rate of convergence becomes n−
1
2 when H is formally set to 1

2
, which

matches the rate of convergence of the Euler scheme in the case of the classical Brownian

1



motion. Furthermore, we have derived the asymptotic behavior of the fluctuations of
the error. The proof of these results is based on the techniques of Malliavin calculus or
stochastic calculus of variations.

In the second part of this project, we have studied two variations of the time discrete
Taylor schemes for rough differential equations and for stochastic differential equations
driven by fractional Brownian motions.

Results

The results obtained in this research project are included in following papers:

[1] Y. Hu, Y. Liu and D. Nualart: Rate of convergence and asymptotic error distribution in
Euler approximation schemes for fractional diffusions, Annals of Applied Probability 26, no.
2, 1147-1207, 2016.

Here is a summary of the main results proved in this paper. First we have established
the following result on the rate of convergence for the modified Euler approximation
scheme, that we denote by Xn:

Theorem 1 Let Xn be the modified Euler approximation scheme for Equation (1). We
assume that b : Rd → Rd and σ : Rd → Rd×d are three and four times continuously
differentiable, respectively, with bounded partial derivatives. Then for any p ≥ 1 there
exists a constant C independent of n (but dependent on p) such that

sup
0≤t≤T

E [|Xn
t −Xt|p]

1
p ≤ Cγ−1

n .

In the case H ∈ (1
2
, 3

4
] we have derived a central theorem for the fluctuations of the

error. More precisely, the process γn(X −Xn) converges in law to the solution of a linear
stochastic differential equation driven by a matrix-valued Brownian motion independent
of B as n tends to infinity. A formal statement is included in the next theorem.

Theorem 2 Let H ∈ (1
2
, 3

4
] and let Xn be the modified Euler approximation scheme for

Equation (1). Assume that b and σ are four and five times continuously differentiable,
respectively, with bounded partial derivatives. Then the following convergence in law the
space C([0, T ]) holds as n tends to infinity,

{γn(Xt −Xn
t ) , t ∈ [0, T ]} → {Ut , t ∈ [0, T ]} , (3)

2



where {Ut , t ∈ [0, T ]} is the solution of the linear d-dimensional stochastic differential
equation

Ut =

∫ t

0

∇b(Xs)Usds+
m∑
j=1

∫ t

0

∇σj(Xs)UsdB
j
s +

m∑
i,j=1

∫ t

0

(∇σjσi)(Xs)dW
ij
s .

In this equation W is a matrix-valued Brownian motion independent of the fractional
Brownian motion BH .

The proof of this theorem is based on a limit theorem for weighted sums and a cen-
tral limit theorem for quadratic functionals of the fractional Brownian motion, which is
established applying the fourth moment theorem of Nualart and Peccati [29].

When we let the Hurst parameter H converge to 1
2

we obtain formally the classical
results for the Brownian motion, obtained, for instance by Kurtz and Protter in [22].

In case H ∈ (3
4
, 1), using a limit theorem in Lp for weighted sums, we have derived

the Lp-limit of the normalized error n(Xt −Xn
t ) in the case H ∈ (3

4
, 1).

Theorem 3 Let H ∈ (3
4
, 1) and σ and b are four and five times continuously differen-

tiable, respectively, with bounded partial derivatives. Then

n(Xt −Xn
t )→ Ūt

in Lp(Ω) as n tends to infinity, where {Ūt , t ∈ [0, T ]} is the solution of the following linear
stochastic differential equation

Ūt =

∫ t

0

∇b(Xs)Ūsds+
m∑
j=1

∫ t

0

∇σj(Xs)ŪsdB
j
s +

m∑
i,j=1

∫ t

0

(∇σjσi)(Xs)dZ
ij
s

+
T

2

∫ t

0

(∇bb)(Xs)ds+
T

2

∫ t

0

(∇bσ)(Xs)dBs +
T

2

m∑
j=1

∫ t

0

(∇σjb)(Xs)dB
j
s ,

where Z is a matrix-valued generalized Rosenblatt-type process.

We have also derived the weak rate of convergence for the modified Euler scheme Xn

to equation (1).

Theorem 4 Let Xn be the modified Euler approximation scheme for equation (1). We
assume b : Rd → Rd and σ : Rd → Rd×d are three and four times continuously differen-
tiable, respectively, with bounded partial derivatives. Then for any function f : Rd → R,

3



which is three times continuously differentiable with bounded derivatives, there exists a
constant C independent of n such that

sup
0≤t≤T

∣∣∣E[f(Xt)
]
− E

[
f(Xn

t )
]∣∣∣ ≤ Cn−1. (4)

If we assume that b and σ are four and five times continuously differentiable, respectively,
with bounded partial derivatives, then for each t ∈ [0, T ],

n
{
E
[
f(Xt)

]
− E

[
f(Xn

t )
]}

converges to

α2
HT

2

m∑
j,i=1

∫ t

0

∫ t

0

∫ t

0

E
{
Di
uD

j
r

[
∇f(Xt)ΛtΓs

(
∇σjσi

)
(Xs)

]}
|u− s|2H−2|s− r|2H−2dudsdr

+
T

2
E
{
∇f(Xt)Λt

[ ∫ t

0

Γs(∇bb)(Xs)ds+

∫ t

0

Γs(∇bσ)(Xs)dBs

+
m∑
j=1

∫ t

0

Γs(∇σjb)(Xs)dB
j
s

]}
, as n→∞.

[2] Y. Hu, Y. Liu and D. Nualart: Taylor schemes for rough differential equations and
fractional diffusions, Discrete and Continuous Dynamical Systems Series B 21, no. 9,
3115-3162, 2016.

In this paper, we study two variations of the time discrete Taylor schemes for rough
differential equations and for stochastic differential equations driven by fractional Brow-
nian motions. One is the incomplete Taylor scheme which excludes some terms of an
Taylor scheme in its recursive computation so as to reduce the computation time. The
other one is to add some deterministic terms to an incomplete Taylor scheme to improve
the mean rate of convergence. Almost sure rate of convergence and Lp-rate of convergence
are obtained for the incomplete Taylor schemes. Almost sure rate is expressed in terms
of the Hölder exponents of the driving signals and the Lp-rate is expressed by the Hurst
parameters. Both rates involves with the incomplete Taylor scheme in a very explicit way
and then provide us with the best incomplete schemes, depending on that one needs the
almost sure convergence or one needs Lp-convergence. As in the smooth case, general
Taylor schemes are always complicated to deal with. The incomplete Taylor scheme is
even more sophisticated to analyze. A new feature of our approach is the explicit expres-
sion of the error functions which will be easier to study. Estimates for multiple integrals
and formulas for the iterated vector fields are obtained to analyze the error functions and
then to obtain the rates of convergence.
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Research proposal 2. Stochastic partial differential equations
driven by fractional noises

Foreword

We have studied the linear stochastic heat equation (also called parabolic Anderson model)
on Rd driven by a general multiplicative centered Gaussian noise. This equation can be
written as

∂u

∂t
=

1

2
∆u+ uẆ , t > 0, x ∈ Rd, (5)

with initial condition u0(x), where u0 is a continuous and bounded function. In the above
equation, Ẇ is a formal Gaussian field that has a covariance of the form

E
[
Ẇt,xẆs,y

]
= γ(s− t) Λ(x− y), (6)

where γ and Λ are general nonnegative and nonnegative definite (generalized) functions
satisfying some integrability conditions. The product appearing in the above equation
(5) can be interpreted as an ordinary product of the solution ut,x times the noise Ẇt,x

(which is a distribution). In this case the evolution form of the equation will involve a
Stratonovich integral (or path-wise Young integral). The product can also be interpreted
as a Wick product and in this case the solution satisfies an evolution equation formulated
using the Skorohod integral. We have considered both formulations.

There has been a widespread interest in the model (5) in the recent past, with several
motivations for its study. First, it appears naturally in homogenization problems for
partial differential equations driven by highly oscillating stationary random fields (see
[2, 19, 21]. On the other hand, equation (5) is also related to the KPZ growth model
through the Cole-Hopf’s transformation. In this context, definitions of the equation by
means of renormalization and rough paths techniques have been recently investigated
in [15, 18]. There is also a strong connexion between equation (5) and the partition
function of directed and undirected continuum polymers. This link has been exploited in
[23, 30] and is particularly present in [1], where basic properties of an equation of type (5)
are translated into corresponding properties of the polymer. Finally, the multiplicative
stochastic heat equation exhibits concentration properties of its energy. This interesting
phenomenon is referred to as intermittency for the process u solution to (5) (see e.g
[12, 13, 14]), and as a localization property for the polymer measure [8]. The intermittency
property for our model is one of the main result we have obtained.

In this project we have derived existence-uniqueness results, Feynman-Kac represen-
tations, chaos expansions and intermittency results for a very wide class of Gaussian

5



noises Ẇ (including in particular those considered in [4, 10]), for both Skorohod and
Stratonovich type equations (5). In particular we have obtained some lower and upper
bounds for the moment of oder k, for all k ≥ 2, which are sharp in the sense that they
have the same exponential order as the upper bounds.

A second part of the project has been devoted to study the one-dimensional stochastic
partial differential equation

∂u

∂t
=
κ

2

∂2u

∂x2
+ σ(u)Ẇ , t ≥ 0, x ∈ R , (7)

where by
E[Ẇ (s, x)Ẇ (t, y)] = H(2H − 1)δ0(t− s)|x− y|2H−2 (8)

with 1
4
< H < 1

2
. That is, W is a standard Brownian motion in time and a fractional

Brownian motion with Hurst parameter H in the space variable. The spatial covariance is
not a locally integrable function and the above expression is formal. A rigorous treatment
of this covariance requires the introduction of the spectral measure µ(dξ) = c1,H |ξ|1−2Hdξ,
where c1,H is a constant depending on H. The standard methodology (see, for instance,
[10]) to handle homogeneous spatial covariances cannot be applied here. In a recent paper,
Balan, Jolis and Quer-Sardanyons [6] proved the existence of a unique mild solution for
equation (7) in the case σ(u) = au + b, but their method cannot be extended to general
nonlinear coefficients.

We have been able to establish the uniqueness of solutions for a nonlinear coefficient
σ, using a truncation argument inspired by the work of Gyöngy and Nualart in [17] on
the stochastic Burgers equation on the whole real line driven by a space-time white noise.
For the existence, we have applied the methodology developed in the work of Gyöngy
in [16] on semi-linear stochastic partial differential equations, which consists in taking
approximations obtained by regularizing the noise and using a compactness argument
on a suitable space of trajectories, together with the strong uniqueness result. We have
also established the Hölder continuity of the solution u in both space and time variables
and derived upper bounds for the moments of the solution using a sharp Burkholder’s
inequality, as well as the matching lower bounds for the second moment by means of a
Sobolev embedding argument.

A third part of the project has been devoted to study the position of the high peaks
that are farthest away from the origin. The propagation of the farthest high peaks was
first considered by Conus and Khoshnevisan in [5] for a one-dimensional heat equation
driven by space-time white noise, where it is shown that there are intermittency fronts
that move linearly with time as αt. Namely, for any fixed p ∈ [2,∞), if α is sufficiently
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small, then the quantity sup|x|>αt E(|u(t, x)|p) grows exponentially fast as t tends to ∞;
whereas the preceding quantity vanishes exponentially fast if α is sufficiently large. To be
more precise, the authors of [5] define for every α > 0,

S (α) := lim sup
t→∞

1

t
sup
|x|>αt

logR(|u(t, x)|p) , (9)

and think of αL as an intermittency lower front if S (α) < 0 for all α > αL, and of αU
as an intermittency upper front if S (α) > 0 whenever α < αU . In [5] it is shown that
for each real number p ≥ 2, 0 < αU ≤ αL < ∞, and when p = 2, some bounds for αL
and αU are given. In a later work by Chen and Dalang [3], it is proved that when p = 2,
there exists a critical number α∗ = λ2

2
such that S (α) < 0 when α > α∗ while S (α) > 0

when α < α∗ (this property was first conjectured in [5]). On the other hand, using a
variational approach we have been able to compute the exponential growth indices for
any value p ≥ 2.

Inspired by the aforementioned works, we have studied the multidimensional stochastic
heat equation (5) driven by a colored noise, both in space and time, when the solution
is interpreted in the Skorohod sense. Due to the presence of the time covariance, the
propagation speed of the farthest high peaks may not be linear. Thus, in contrast to (9),
the inequality |x| > αt there needs to be replaced by |x| > αtθt for some suitable function
θt. When Λ is the Riesz kernel, we obtain a better estimate of the intermittency lower
front. We also have provided explicit formulas for S (α), for arbitraty p ≥ 2, using a
variational approach.

Further contributions to stochastic partial differential equations include an explicit
formula for the two-point correlation function for the solutions to the stochastic heat
equation driven by a space-time white noise, the analysis of fractional in time equations
and the spatial asymptotics for the stochastic heat equation driven by a Gaussian noise
which is whit in time and it has the covariance of a fractional Brownian motion with
Hurst parameter H ∈ (1

4
, 1

2
).

Results

The results obtained in this research project are included in the following papers whose
main results are described below.

[3] J. Huang, Y. Hu, D. Nualart and S. Tindel: Stochastic heat equations with general
multiplicative Gaussian noises: Hölder continuity and intermittency. Electronic Journal of
Probability 20 (2015) 1-50.

Here is a summary of the main results proved in this paper:
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(i) In the Skorohod case, the mild solution to equation (5) has a formal Wiener chaos
expansion, which converges in L2(Ω), provided γ is locally integrable and the spectral
measure µ of the spatial covariance satisfies the following integrability condition (known
as Dalang’s condition): ∫

Rd

µ(dξ)

1 + |ξ|2
<∞. (10)

Moreover, the solution is unique. The proof of this result is based on Fourier analysis
techniques, and covers the particular examples of the Riesz kernel and the Bessel kernel
considered by Balan and Tudor in [7]. Our results also encompass the case of the fractional
covariance Λ(x) =

∏d
i=1Hi(2Hi−1)|xi|2Hi−2, where Hi >

1
2

and condition (10) is satisfied

if and only if
∑d

i=1Hi > d− 1. This particular structure has been examined in [20].

(ii) Under these general hypotheses to ensure the existence and uniqueness of the solution
of Skorohod type one cannot expect to have a Feynman-Kac formula for the solution, but
one can establish Feynman-Kac-type formulas for the moments of the solution. More
precisely, for any integer k ≥ 2

E
[
ukt,x
]

= EB

[
k∏
i=1

u0(Bi
t + x) exp

( ∑
1≤i<j≤k

∫ t

0

∫ t

0

γ(s− r)Λ(Bi
s −Bj

r)dsdr

)]
, (11)

where {Bj; j = 1, . . . , k} is a family of d-dimensional independent standard Brownian
motions independent of W . The formulas we have obtained, generalize those obtained for
the Riesz or the Bessel kernels in [7, 20].

(iii) Consider the following more restrictive integrability assumptions on γ and µ: There
exists a constant 0 < β < 1 such that for any t ∈ R,

0 ≤ γ(t) ≤ Cβ|t|−β

and the measure µ satisfies ∫
Rd

µ(dξ)

1 + |ξ|2−2β
<∞.

Under these assumptions, we have derived a Feynman-Kac formula for the solution u to
Equation (5) in the Stratonovich sense. An immediate application of the Feynman-Kac
formula is the Hölder continuity of the solution.

(iv) In the Stratonovich case, we have given a notion of solution to equation (5) using two
different methodologies. One is based on the Stratonovich integral defined as the limit in
probability of the integrals with respect to a regularization of the noise, and another one
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uses a path-wise approach, weighted Besov spaces and a Young integral approach. We
show that the two notions coincide and some existence-uniqueness results which are (to
the best of our knowledge) the first link between pathwise and Malliavin calculus solutions
to equation (5).

(v) Under some further restrictions, we have obtained some sharp lower bounds for the
moments of the solution. Namely, we can find explicit numbers κ1 and κ2 and constants
cj, Cj for j = 1, 2 such that

C1 exp (c1t
κ1kκ2) ≤ E

[
|ut,x|k

]
≤ C2 exp (c2t

κ1kκ2)

for all t ≥ 0, x ∈ Rd and k ≥ 2.

[4] Y. Hu, J. Huang, K. Lê, D. Nualart and S. Tindel: Stochastic heat equation with rough
dependence in space. Under revision for the Annals of Probability. Arxiv:1505.04924v1. 57
pages long.

Here is a summary of the main results proved in this paper:

(i) Uniqueness result for equation (7): Consider the space ZpT formed by all random fields
v(t, x) such that

‖v‖ZpT := sup
t∈[0,T ]

‖v(t, ·)‖Lp(Ω×R) + sup
t∈[0,T ]

N ∗1
2
−H,pv(t) <∞, (12)

where p ≥ 2 and

N ∗1
2
−H,pv(t) =

(∫
R
‖v(t, ·)− v(t, ·+ h)‖2

Lp(Ω×R)|h|2H−2dh

) 1
2

. (13)

Assume that σ is differentiable, its derivative is Lipschitz, σ(0) = 0 and for p > 6
4H−1

, the
initial condition u0 is in Lp(R) and∫

R
‖u0(·)− u0(·+ h)‖2

Lp(R)|h|2H−2dh <∞ . (14)

Then, if u and v are two solutions of (7) and u, v ∈ ZpT , for every t ∈ [0, T ] and x ∈ R,
u(t, x) = v(t, x), a.s.

(ii) Existence result for equation (7): Define

Nβu0(x) =

(∫
R
|u0(x+ h)− u0(x)|2|h|−1−2βdh

) 1
2

9



and assume that for some β > 1
2
− H and some p > max( 6

4H−1
, 1
β+H−1/2

), the initial

condition u0 is in Lp(R) ∩ L∞(R) and

sup
x∈R
Nβu0(x) +

(∫
R
‖u0(·)− u0(·+ h)‖2

Lp(R)|h|2H−2dh

) 1
2

<∞ . (15)

Suppose also that σ is differentiable and the derivative of σ is Lipschitz and σ(0) = 0.

Then there exists a solution u to (7) in the space ZpT ∩X
1
2
−H,p

T , where X
1
2
−H,p

T is the family
of random fields u satisfying

sup
t∈[0,T ], x∈R

‖u(t, x)‖Lp(Ω) + sup
t∈[0,T ],x∈R

(∫
R
‖u(t, x+ y)− u(t, x)‖2

Lp(Ω)|y|2H−2dy

) 1
2

<∞ .

(ii) Moment estimates for equation (7): Let 1
4
< H < 1

2
, and consider the solution u to

equation (7) with σ(u) = u wit initial condition is u0(x) ≡ 1. Let n ≥ 2 be an integer,
x ∈ R and t ≥ 0. Then there exist some positive constants c1, c2, c3 independent of n, t
and κ with 0 < c1 < c2 satisfying

exp(c1n
1+ 1

H κ1− 1
H t) ≤ E[un(t, x)] ≤ c3 exp

(
c2n

1+ 1
H κ1− 1

H t
)
.

[5] Y. Hu, J. Huang and D. Nualart: On the intermittency front of stochastic heat equation
driven by colored noises. Electronic Communications in Probability 21, no 21, 1-13, 2016.

Here is a summary of the main results proved in this paper. Suppose that the spectral
measure of the spatial covariance µ satisfies Dalang’s condition. For any real number
N > 0, we define

CN =

∫
|ξ|>N

µ(dξ)

|ξ|2
, and DN = µ {ξ : |ξ| ≤ N} . (16)

On the other hand, we assume that γ is locally integrable, we set
∫ t

0
γ(s)ds = Γt. The

next theorem provides an upper bound for the upper intermittency front:

Theorem 5 Let u(t, x) be the solution to equation (5) driven by a noise W with covari-
ance structure (6). Assume that u0 is non-negative and supported in the ball BM = {x ∈
Rd : |x| ≤M}. Set θt =

√
DNtC

−1
Nt

, where

Nt = inf

{
N ≥ 0 : CN ≤

(2π)d

32(p− 1)λ2Γt

}
. (17)
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Then, for any integer p ≥ 2, we have

ν̄(p) := inf

{
% > 0 : lim sup

t→∞

1

tθ2
t

sup
|x|≥%tθt

logE[up(t, x)] < 0

}
≤ 1 . (18)

We have derived also a lower bound for the lower intermittency front, but only in the
particular case where the spatial covariance is the Riesz kernel.

[6] J. Huang, K. Lê and D. Nualart: Large time asymptotics for the parabolic Anderson model
driven by spatially correlated noise. To appear in Annals of the Institut Henri Poincaré.
Arxiv:1509.00897v3 39 pages long.

In this paper we study the linear stochastic heat equation, also known as parabolic
Anderson model, in multidimension driven by a Gaussian noise which is white in time
and it has a correlated spatial covariance. Examples of such covariance include the Riesz
kernel in any dimension and the covariance of the fractional Brownian motion with Hurst
parameter H ∈ (1

4
, 1

2
] in dimension one. First we establish the existence of a unique

mild solution and we derive a Feynman-Kac formula for its moments using a family of
independent Brownian bridges and assuming a general integrability condition on the initial
data. In the second part of the paper we compute Lyapunov exponents, lower and upper
exponential growth indices in terms of a variational quantity. The last part of the paper
is devoted to study the phase transition property of the Anderson model.

[7] Y. Huang, K. Lê and D. Nualart: Large time asymptotics for the parabolic Ander-
son model driven by space and time correlated noise. Submitted for publication Arxiv:16-
7.00682v1 23 pages long.

In this paper we study the linear stochastic heat equation on R`, driven by a Gaussian
noise which is colored in time and space. The spatial covariance satisfies general assump-
tions and includes examples such as the Riesz kernel in any dimension and the covariance
of the fractional Brownian motion with Hurst parameter H ∈ (1

4
, 1

2
] in dimension one.

First we establish the existence of a unique mild solution and we derive a Feynman-Kac
formula for its moments using a family of independent Brownian bridges and assuming
a general integrability condition on the initial data. In the second part of the paper we
compute Lyapunov exponents and lower and upper exponential growth indices in terms
of a variational quantity.

[8] X. Chen, Y. Hu, S. Tindel and D. Nualart: Spatial asymptotics for the parabolic Anderson
model driven by a Gaussian rough noise. Submitted for publication. Arxiv:1607.04092v1. 41
pages long.
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The aim of this paper is to establish the almost sure asymptotic behavior as the space
variable becomes large, for the solution to the one spatial dimensional stochastic heat
equation driven by a Gaussian noise which is white in time and which has the covariance
structure of a fractional Brownian motion with Hurst parameter H ∈

(
1
4
, 1

2

)
in the space

variable.

[9] L. Chen, Y. Hu, K. Kalbasi and D. Nualart: Intermittency for the stochastic heat
equation driven by fractional noise in time with H ∈ (0, 1/2). Submitted for publication.
Arxiv:1602.05617v1. 22 pages long.

This paper studies the one-dimensional stochastic heat equation driven by a Gaussian
noise which is, with respect to time, a fractional Brownian motion with Hurst parameter
H ∈ (0, 1/2). We establish the Feynman-Kac representation of the solution and obtain
both lower and upper bounds for the Lp(Ω) moments.

[10] L. Chen, Y. Hu and D. Nualart: Nonlinear stochastic time-fractional slow and fast
diffusion equations on Rd. Submitted for publication. Arxiv:1509.07763v1. 43 pages long.

This paper studies the nonlinear stochastic partial differential equation of fractional
orders both in space and time variables:(

∂β +
ν

2
(−∆)α/2

)
u(t, x) = Iγt

[
ρ(u(t, x))Ẇ (t, x)

]
, t > 0, x ∈ Rd,

where Ẇ is the space-time white noise, α ∈ (0, 2], β ∈ (0, 2), γ ≥ 0 and ν > 0. Fun-
damental solutions and their properties, in particular the nonnegativity, are derived and
proved. The existence and uniqueness of solution together with the moment bounds of the
solution are obtained under Dalang’s condition: d < 2α+ α

β
min(2γ−1, 0). In some cases,

the initial data can be measures. When β ∈ (0, 1], we prove the sample path regularity
of the solution.

[11] L. Chen, Y. Hu and D. Nualart: Two-point correlation function and Feynman-Kac for-
mula for the stochastic heat equation. To appear in Potential Analysis. Arxiv:1607.00682v1
23 pages long.

In this paper, we obtain an explicit formula for the two-point correlation function for
the solutions to the stochastic heat equation on R. The bounds for p-th moments proved
by Chen and Dalang in [9] are simplified. We validate the Feynman-Kac formula for the
p-point correlation function of the solutions to this equation with measure-valued initial
data, using techniques from Malliavin calculus.

12



Research proposal 3. Estimation of parameters for stochastic
differential equations driven by a fractional Brownian motion

Foreword

We have studied fractional Volterra processes Xi = {Xi(t), t ≥ 0}, i = 1, . . . , k, of the
form

Xi(t) =

∫ t

0

xi(t− s)dBH(s), t ≥ 0, (19)

where BH is a fractional Brownian motion with Hurst parameter H > 1
2
, and xi : [0,∞)→

R are measurable functions satisfying suitable integrability conditions.
The special case of k = 1 and x1(u) = σ e−θu, with σ, θ > 0, corresponds to the

fractional Ornstein-Uhlenbeck process. More generally, our model includes the solution
to k-th order stochastic differential equation driven by BH , known as fractional CARk
model, which generalizes the model introduced in [24]:{

X(k)(t) =
∑k−1

j=0 θjX
(j)(t) + σḂH(t), t > 0

X(0) = . . . = X(k−1)(0) = 0
, (20)

where the superscript (j) denotes j-fold differentiation with respect to t.
Motivated by the parameter estimation in the model (20), we have derived general

central limit theorems for functionals of the process (19). The results are applied to the
problem of parameter estimation in the fractional CARk model, and the limit matrix
covariance is computed explicitly in the particular case k = 2 and under some restrictions
on the parameters θ0 and θ1.

In a second part of this research direction, we have derived a central limit theorem
for functionals of a large class of Gaussian self-similar processes. We have also studied
self-similar Gaussian process that arise form stochastic partial differential equations with
additive noise. For these processes we have established a decomposition in law and a
central limit theorem for the Hermite variations of the increments. Finally we have
derived a general Itô formula in law for weak symmetric integrals with respect to the
fractional Brownian motion, we have studied stochastic differential equations with power
type nonlinearities and we have derived properties of the derivative of the self-intersection
local time of the fractional Brownian motion.

Results

The results obtained in this research project are included in the following papers whose
main results are described below.
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[12] I. Nourdin, D. Nualart and R. Zintout: Multivariate central limit theorems for aver-
ages of fractional Volterra processes and applications to parameter estimation. Accepted in
Statistical Inference for Stochastic Processes 19 no. 2, 219-234, 2016.

Here is a summary of the main results proved in this paper: Consider the random
vector UT = (U1,T , . . . , Uk,T ), where

Ui,T =
1√
T

∫ T

0

fi

(
Xi(t)

σi(t)

)
dt. (21)

In this definition, Xi. i = 1, . . . , k, are the fractional Volterra processes defined by (19),
fi, i = 1, . . . , k, are real mesurable functions satisfying∫

R
fi(x)e−x

2/2dx = 0 and

∫
R
f 2
i (x)e−x

2/2dx <∞, (22)

and σi(t) =
√
E[Xi(t)2]. The second condition in (22) ensures that fi can be expanded

in Hermite polynomials, namely

fi =
∞∑
l=0

ai,lHl with
∑∞

l=0 l!a
2
i,l <∞, (23)

whereas from the first one we deduce that ai,0 = 0.
Then, following the approach developed in Nourdin, Peccati and Podolskij [28] (see

also [27, Chapter 7]) we have proved the following result.

Theorem 6 Let qi denote the Hermite rank of fi, that is, the smallest value of l such
that the coefficient ai,l of Hl in (23) is different from zero. Set q∗ = min1≤i≤k qi and
assume that q∗ ≥ 2. Consider UT = (U1,T , . . . , Uk,T ), where Ui,T is given by (21). If
H ∈ (1

2
, 1− 1

2q∗
) and if the functions xi defining Xi satisfy both∫

R

(∫
[0,∞)2

|xi(u)xj(v)| |v − u− a|2H−2dudv

)qi∨qj
da <∞ (24)

and

ηi :=

√
H(2H − 1)

∫
[0,∞)2

xi(u)xi(v)|v − u|2H−2dudv ∈ (0,∞), (25)

for all i, j = 1, . . . , k, then

UT
law→ Nk(0,Λ) as T →∞, (26)
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where Λ = (Λij)1≤i,j≤k is given by

Λij =
∞∑

l=qi∨qj

ai,laj,ll!
H l(2H − 1)l

ηliη
l
j

(27)

×
∫
R

(∫
[0,∞)2

xi(u)xj(v)|v − u− a|2H−2dudv

)l
da.

In Theorem 6 we must divide by a quantity depending on t in (21), namely σi(t), which
is not very convenient for applications. In this sense we have considered the random vector
VT = (V1,T , . . . , Vk,T ) given by

Vi,T =
1√
T

∫ T

0

fi

(
Xi(t)

ηi

)
dt, (28)

where ηi is given in (25), and we have proved the following theorem.

Theorem 7 Suppose that fi = Pi, i = 1, . . . , k, are real polynomials and denote by
qi the Hermite rank of Pi. Set q∗ = min1≤i≤k qi and assume that q∗ ≥ 2. Consider
VT = (V1,T , . . . , Vk,T ) given by (28). If H ∈ (1

2
, 1− 1

2q∗
) and if the functions xi defining Xi

satisfy (24), (25) as well as∫
[0,∞)2

|xi(u)xi(v)|
(
(u ∧ v) ∨ 1

)
|v − u|2H−2dudv <∞, (29)

then
VT

law→ Nk(0,Λ) as T →∞, (30)

with Λ still given by (27).

[13] D. Harnett and D. Nualart: Central limit theorem for functionals of a generalized self-
similar Gaussian process. Arxiv:1508.02756v1. Submitted for publication. 16 pages long.

Here is a summary of the main results proved in this paper. Let X = {Xt, t ≥ 0}
denote a centered self-similar Gaussian process with self-similarity parameter β ∈ (0, 1).
Consider the following conditions on the function φ defined φ(x) = E[X1Xx] for x ≥ 1,
where α ∈ (0, 2β]:
(H.1) φ has the form φ(x) = −λ(x−1)α+ψ(x), where λ > 0, ψ(x) is twice-differentiable
on an open set containing [1,∞), and there is a constant C ≥ 0 such that for any
x ∈ (1,∞)
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1. |ψ′(x)| ≤ Cxα−1;

2. |ψ′′(x)| ≤ Cx−1(x− 1)α−1; and

3. ψ(1) = βψ′(1), when α ≥ 1.

(H.2) There are constants C > 0 and 1 < ν ≤ 2 such that for all x ≥ 2,

1. |φ′(x)| ≤

{
C(x− 1)−ν if α < 1

C(x− 1)α−2 if α ≥ 1,

2. |φ′′(x)| ≤

{
C(x− 1)−ν−1 if α < 1

C(x− 1)α−3 if α ≥ 1.

Under these conditions, and using the Fourth Moment Theorem we proved the follow-
ing result.

Theorem 8 Suppose a self-similar Gaussian process X which satisfies (H.1) and (H.2)
above. For T > 0 and integers n ≥ 2, consider the sequence

Fn =
1√
n

bntc−1∑
j=0

f(Yj,n),

where f ∈ L2(R, γ) has Hermite rank d ≥ 2 and γ = N(0, 1) and Yj,n = ∆Xj
‖∆Xj‖L2(Ω)

,

∆Xj = X(j+1)/n − Xj/n. Then, if α < 2 − 1
d
, the sequence {Fn, n ≥ 1} converges in

distribution to a Gaussian random variable, with mean zero and variance given by σ2 =∑∞
q=d c

2
qσ

2
q , where

σ2
q = 2−qq!T

∑
m∈Z

(|m+ 1|α + |m− 1|α − 2|m|α)q .

[14] D. Harnett and D. Nualart: Decomposition and limit theorems for a class of self-similar
Gaussian processes. Arxiv:1508.06641v1. Submitted for publication. 16 pages long.

Here is a summary of the main results proved in this paper: Consider a centered
Gaussian process {Xt, t ≥ 0} with covariance

R(s, t) = E[XsXt] = E
[(∫ t

0

Zt−rdB
H
r

)(∫ s

0

Zs−rdB
H
r

)]
, (31)

where
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(i) BH = {BH
t , t ≥ 0} is a fractional Brownian motion with Hurst parameter H ∈ (0, 1).

(ii) Z = {Zt, t > 0} is a zero-mean Gaussian process, independent of BH , with covari-
ance

E[ZsZt] = (s+ t)−γ, (32)

where 0 < γ < 2H.

In other words, X is a Gaussian process with the same covariance as the process {
∫ t

0
Zt−rdB

H
r , t ≥

0}, which is not Gaussian. Our first result is the following decomposition in law of the
process X as the sum of a fractional Brownian motion with Hurst parameter α

2
= H − γ

2

plus a process with regular trajectories.

Theorem 9 The process X has the same law as {
√
κB

α
2
t + Yt, t ≥ 0}, where

κ =
1

Γ(γ)

∫ ∞
0

zγ−1

1 + z2
dz, (33)

B
α
2 is a fractional Brownian motion with Hurst parameter α/2, and Y (up to a constant)

is the process introduced by Lei and Nualart in [25], that is, Y is a centered Gaussian
process with covariance given by

E [YtYs] = λ1

∫ ∞
0

y−α−1(1− e−yt)(1− e−ys) dy,

where

λ1 =
4π

Γ(γ)Γ(2H + 1) sin(πH)

∫ ∞
0

η1−2H

1 + η2
dη.

Theorem 10 Let q ≥ 2 be an integer and fix a real T > 0. Suppose that α < 2− 1
q
. For

t ∈ [0, T ], define,

Fn(t) = n−
1
2

bntc−1∑
j=0

Hq

(
∆Xj

‖∆Xj‖L2(Ω)

)
,

where Hq(x) denotes the qth Hermite polynomial and ∆Xj = X(j+1)/n − Xj/n. Then
as n → ∞, the stochastic process {Fn(t), t ∈ [0, T ]} converges in law in the Skorohod
space D([0, T ]), to a scaled Brownian motion {σBt, t ∈ [0, T ]}, where {Bt, t ∈ [0, T ]} is a
standard Brownian motion and σ =

√
σ2 is given by

σ2 =
q!

2q

∑
m∈Z

(|m+ 1|α − 2|m|α + |m− 1|α)q .
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[15] G. Binotto, I. Nourdin and D. Nualart: Weak symmetric integrals with respect to the
fractional Brownian motion. Arxiv:1606.04046v1. Submitted for publication. 21 pages long.

The aim of this paper is to establish the weak convergence, in the topology of the
Skorohod space, of the ν-symmetric Riemann sums for functionals of the fractional Brow-
nian motion when the Hurst parameter takes the critical value H = (4` + 2)−1, where

` = `(ν) ≥ 1 is the largest natural number satisfying
∫ 1

0
α2jν(dα) = 1

2j+1
for all j =

0, . . . , ` − 1. As a consequence, we derive a change-of-variable formula in distribution,
where the correction term is a stochastic integral with respect to a Brownian motion that
is independent of the fractional Brownian motion.

[16] J. A. León, D. Nualart and S. Tindel: Young differential equations with power type
nonlinearities. Arxiv:1606.02258v1. Submitted for publication. 25 pages long.

In this paper we give several methods to construct nontrivial solutions to the equation
dyt = σ(yt) dxt, where x is a γ-Hölder Rd-valued signal with γ ∈ (1/2, 1) and σ is a function
behaving like a power function |ξ|κ, with κ ∈ (0, 1). In this situation, classical Young
integration techniques allow to get existence and uniqueness results whenever γ(κ+1) > 1,
while we focus on cases where γ(κ+ 1) ≤ 1. Our analysis then relies on Zähle’s extension
of Young’s integral allowing to cover the situation at hand.

[17] A. Jaramillo and D. Nualart: Asymptotic properties of the derivative of self-intersection
local time of fractional Brownian motion. To appear in Stochastic Processes and Their
Applications. Arxiv:1512.07219v1. 34 pages long.

Let {Bt}t≥0 be a fractional Brownian motion with Hurst parameter 2
3
< H < 1. We

prove that the approximation of the derivative of self-intersection local time, defined as

αε =

∫ T

0

∫ t

0

p′ε(Bt −Bs)dsdt,

where pε(x) is the heat kernel, satisfies a central limit theorem when renormalized by

ε
3
2
− 1
H . We prove as well that for q ≥ 2, the q-th chaotic component of αε converges

in L2 when 2
3
< H < 3

4
, and satisfies a central limit theorem when renormalized by a

multiplicative factor ε1− 3
4H in the case 3

4
< H < 4q−3

4q−2
.
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